منابع مشابه
Group Normalization for Genomic Data
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to differe...
متن کاملGroup Normalization
Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train. However, normalizing along the batch dimension introduces problems — BN’s error increases rapidly when the batch size becomes smaller, caused by inaccurate batch statistics estimation. This limits BN’s usage for training larger models and transferring features to computer v...
متن کاملGroup Orbit Optimization: A Unified Approach to Data Normalization
In this paper we propose and study an optimization problem over a matrix group orbit that we call Group Orbit Optimization (GOO). We prove that GOO can be used to induce matrix decomposition techniques such as singular value decomposition (SVD), LU decomposition, QR decomposition, Schur decomposition and Cholesky decomposition, etc. This gives rise to a unified framework for matrix decompositio...
متن کاملGroup additive regression models for genomic data analysis.
One important problem in genomic research is to identify genomic features such as gene expression data or DNA single nucleotide polymorphisms (SNPs) that are related to clinical phenotypes. Often these genomic data can be naturally divided into biologically meaningful groups such as genes belonging to the same pathways or SNPs within genes. In this paper, we propose group additive regression mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0038695